Maple 9.5/10 в математике, физике и образовании
Предисловие
В последние полтора десятка лет возникло и получило бурное развитие новое фундаментальное научное направление — компьютерная математика [1], которое зародилось на стыке математики и информатики. Первыми серьезными средствами для автоматизированного выполнения массовых научно-технических расчетов стали программируемые микрокалькуляторы [2, 3]. С появлением персональных компьютеров их стали широко применять для численных расчетов, программируемых на языках высокого уровня, например, Фортране, Си, Бейсике или Форте [4–6]. Однако все большее распространение получают аналитические (символьные) вычисления, обладающие гораздо большей общностью, чем численные вычисления.
Предвестником появления систем компьютерной математики стали специализированные программы для математических численных расчетов, работающие в среде Microsoft MS-DOS. Это Eureka [7], Mercury, Mathcad [8] и MATLAB [10] под операционную систему MS-DOS. Казалось бы это было совсем недавно — в начале 90-х годов ушедшего столетия. Вслед за этим, на основе достижений компьютерной математики, были разработаны новейшие программные системы символьной математики или компьютерной алгебры (СКА). Среди них наибольшую известность получили системы Mathcad под Windows [9], Derive [11–13]. Mathematica [14-16] и Maple [17-27] и др.
Хотя множество (и даже большинство) математических задач решается с помощью СКМ без программирования, это не означает отказ от программирования вообще. Напротив, все СКМ, в частности Maple 9.5/10, имеют довольно развитый язык программирования, содержащий типовые средства процедурного программирования, например управляющие структуры, циклы, операторы ввода/вывода и т.д.
Комментарии к книге «Maple 9.5/10 в математике, физике и образовании», Владимир Павлович Дьяконов
Всего 0 комментариев